Space Weather Observations, Alerts, and Forecast
3-day Solar-Geophysical Forecast
Product: 3-Day Forecast
- Issued: 2025 Oct 08 0030 UTC
Prepared by the U.S. Dept. of Commerce, NOAA, Space Weather Prediction Center.
Geomagnetic Activity Observation and Forecast
The greatest observed 3 hr Kp over the past 24 hours was 4 (below NOAA Scale levels). The greatest expected 3 hr Kp for Oct 08-Oct 10 2025 is 4.67 (NOAA Scale G1).
Oct 08 | Oct 09 | Oct 10 | |
---|---|---|---|
00-03UT | 4.67 (G1) | 3.00 | 1.67 |
03-06UT | 4.33 | 2.67 | 1.67 |
06-09UT | 4.67 (G1) | 2.00 | 1.67 |
09-12UT | 3.00 | 1.67 | 1.33 |
12-15UT | 2.00 | 1.33 | 1.33 |
15-18UT | 2.00 | 1.33 | 1.33 |
18-21UT | 2.67 | 1.67 | 1.33 |
21-00UT | 3.00 | 1.67 | 1.33 |
Rationale: Periods of G1 (Minor) geomagnetic storming are likely on 08 Oct due to the anticipated arrival of two slow-moving CMEs that left the Sun on 03 Oct.
Solar Radiation Activity Observation and Forecast
Solar radiation, as observed by NOAA GOES-18 over the past 24 hours, was below S-scale storm level thresholds.
Oct 08 | Oct 09 | Oct 10 | |
---|---|---|---|
S1 or greater | 5% | 1% | 1% |
Rationale: No S1 (Minor) or greater solar radiation storms are expected. No significant active region activity favorable for radiation storm production is forecast.
Radio Blackout Activity and Forecast
No radio blackouts were observed over the past 24 hours.
Oct 08 | Oct 09 | Oct 10 | |
---|---|---|---|
R1-R2 | 35% | 30% | 30% |
R3 or greater | 10% | 5% | 5% |
Rationale: A moderate chance for R1-R2 (Minor-Moderate) radio blackouts due to M-class flare activity, with a slight chance for an isolated R3 (Strong) event, will persist through 08 Oct. Probabilities undergo a minor decrease on 09-10 Oct as Region 4236 exits the western limb.
Real Time Images of the Sun
SOHO EIT 304![]() |
SOHO EIT 284![]() |
Mauna Loa Coronal Intensity |
The sun is constantly monitored for sun spots and coronal mass ejections. EIT (Extreme ultraviolet Imaging Telescope) images the solar atmosphere at several wavelengths, and therefore, shows solar material at different temperatures. In the images taken at 304 Angstrom the bright material is at 60,000 to 80,000 degrees Kelvin. In those taken at 171 Angstrom, at 1 million degrees. 195 Angstrom images correspond to about 1.5 million Kelvin, 284 Angstrom to 2 million degrees. The hotter the temperature, the higher you look in the solar atmosphere. COMP CORONAL INTENSITY The COronal Multi-channel Polarimeter (CoMP) observes the Fe-XIII emission line at 1074.7 nm to measure the coronal magnetic field and obtain plasma density and motion in the low corona from ~1.03 to 1.5 solar radii.
Real Time Solar X-ray and Solar Wind
Latest LASCO Solar Corona Large Angle and Spectrometric Coronagraph (LASCO). |
Real-Time Solar Wind Real-Time Solar Wind data broadcast from NASA's ACE satellite. |
Space Weather Overview![]() These plots show the current Space Weather Overview. |
Auroral Activity Extrapolated from NOAA POES
Northern Hemi Auroral Map |
Southern Hemi Auroral Map |
This is a short-term forecast of the location and intensity of the aurora. This product is based on the OVATION model and provides a 30 to 90 minute forecast of the location and intensity of the aurora. The forecast lead time is the time it takes for the solar wind to travel from the L1 observation point to Earth.
The two maps show the North and South poles of Earth respectively. The brightness and location of the aurora is typically shown as a green oval centered on Earths magnetic pole. The green ovals turn red when the aurora is forecasted to be more intense. The sunlit side of Earth is indicated by the lighter blue of the ocean and the lighter color of the continents. Aurora can often be observed somewhere on Earth from just after sunset or just before sunrise. The aurora is not visible during daylight hours. The aurora does not need to be directly overhead but can be observed from as much as a 1000 km away when the aurora is bright and if conditions are right. The aurora is an indicator of the current geomagnetic storm conditions and provides situational awareness for a number of technologies. The aurora directly impacts HF radio communication and GPS/GNSS satellite navigation. It is closely related to the ground induced currents that impact electric power transition. For many people, the aurora is a beautiful nighttime phenomenon that is worth traveling to arctic regions just to observe. It is the only way for most people to actually experience space weather. In 2020, NOAA SWPC implemented the new version of the OVATION Prime model into operations. This version has been dubbed OVATION 2020. The Auroral Forecast product is based on the OVATION Prime model developed by P. Newell at the Johns Hopkins, Applied Physics Laboratory.