Space Weather Observations, Alerts, and Forecast

3-day Solar-Geophysical Forecast

:Product: 3-Day Forecast
:Issued: 2017 Aug 21 1230 UTC
# Prepared by the U.S. Dept. of Commerce, NOAA, Space Weather Prediction Center
#
A. NOAA Geomagnetic Activity Observation and Forecast

The greatest observed 3 hr Kp over the past 24 hours was 3 (below NOAA
Scale levels).
The greatest expected 3 hr Kp for Aug 21-Aug 23 2017 is 4 (below NOAA
Scale levels).

NOAA Kp index breakdown Aug 21-Aug 23 2017

            Aug 21     Aug 22     Aug 23
00-03UT        3          4          2     
03-06UT        2          3          3     
06-09UT        3          3          2     
09-12UT        3          2          2     
12-15UT        3          2          2     
15-18UT        4          2          2     
18-21UT        3          2          2     
21-00UT        3          3          2     

Rationale: No G1 (Minor) or greater geomagnetic storms are expected.  No
significant transient or recurrent solar wind features are forecast.

B. NOAA Solar Radiation Activity Observation and Forecast

Solar radiation, as observed by NOAA GOES-13 over the past 24 hours, was
below S-scale storm level thresholds.

Solar Radiation Storm Forecast for Aug 21-Aug 23 2017

              Aug 21  Aug 22  Aug 23
S1 or greater    1%      1%      1%

Rationale: No S1 (Minor) or greater solar radiation storms are expected.
No significant active region activity favorable for radiation storm
production is forecast.

C. NOAA Radio Blackout Activity and Forecast

No radio blackouts were observed over the past 24 hours.

Radio Blackout Forecast for Aug 21-Aug 23 2017

              Aug 21        Aug 22        Aug 23
R1-R2           25%           25%           25%
R3 or greater    1%            1%            1%

Rationale: There is a chance for R1-R2 (Minor-Moderate) radio blackouts
for the forecast period due to flare potential from Regions 2671 and
2672.

Real Time Images of the Sun


SOHO EIT 304
Click for time-lapse image of the sun
SOHO EIT 284
SOHO EIT 284 image of the sun
Mauna Loa Solar Image
Latest Mauna Loa image of the Sun

The sun is constantly monitored for sun spots and coronal mass ejections. EIT (Extreme ultraviolet Imaging Telescope) images the solar atmosphere at several wavelengths, and therefore, shows solar material at different temperatures. In the images taken at 304 Angstrom the bright material is at 60,000 to 80,000 degrees Kelvin. In those taken at 171 Angstrom, at 1 million degrees. 195 Angstrom images correspond to about 1.5 million Kelvin, 284 Angstrom to 2 million degrees. The hotter the temperature, the higher you look in the solar atmosphere.

Real Time Solar X-ray and Solar Wind


Latest LASCO Solar Corona
Images of the solar corona
Large Angle and Spectrometric Coronagraph (LASCO).
Real-Time Solar Wind
Graph showing Real-Time Solar Wind
Real-Time Solar Wind data broadcast from NASA's ACE satellite.
Solar X-ray Flux
Graph showing Real-Time Solar X-ray Flux
This plot shows 3-days of 5-minute solar x-ray flux values measured on the SWPC primary and secondary GOES satellites.
Satellite Environment Plot
Graph showing Real-Time Satellite Environment Plot
The Satellite Environment Plot combines satellite and ground-based data to provide an overview of the current geosynchronous satellite environment.

Solar Cycle


Sun Spot Number Progression
Graph showing Sun Spot Number Progression
This plot shows the Solar Cycle Sun Spot Number Progression.
F10.7cm Radio Flux Progression
Graph showing F10.7cm Radio Flux Progression
This plot shows the F10.7cm Radio Flux Progression.
Ap Progression
Graph showing Ap Progression
This plot shows the Solar Cycle Ap Progression.

The Solar Cycle is observed by counting the frequency and placement of sunspots visible on the Sun. Solar minimum occurred in December, 2008.
Solar maximum was expected to occur in May, 2013.


Auroral Activity Extrapolated from NOAA POES


Northern Hemi Auroral Map
Current Northern hemispheric power input map
Southern Hemi Auroral Map
Current Southern hemispheric power input map

The OVATION Aurora Forecast Model shows the intensity and location of the aurora predicted for the time shown at the top of the map. This probability forecast is based on current solar wind conditions measured at L1, but using a fixed 30-minute delay time between L1 and Earth. A 30-minute delay corresponds to approximately 800 km/s solar wind speed as might be encountered during geomagnetic storming conditions. In reality, delay times vary from less than 30 minutes to an hour or so for average solar wind conditions.

The sunlit side of Earth is indicated by the lighter blue of the ocean and the lighter color of the continents. The day-night line, or terminator, is shown as a region that goes from light to dark. The lighter edge is where the sun is just at the horizon. The darker edge is where the sun is 12 degrees below the horizon. Note that the aurora will not be visible during daylight hours; however, the aurora can often be observed within an hour before sunrise or after sunset.

SWPC has a discussion of the Aurora phenomena and tips for the best opportunities to view Aurora at various locations.


VHF and HF Band Conditions





Credits:

Space Weather Images and Information (excluded from copyright) courtesy of:
NOAA / NWS Space Weather Prediction Center
Mauna Loa Solar Observatory (HAO/NCAR)
SOHO (ESA & NASA).

Space Weather links:
3-Day Forecast of Solar and Geophysical Activity
Space Weather Overview
LASCO Coronagraph
Real-Time Solar Wind
Space Weather Advisory Outlooks
Space Weather Forecast Disussions
Space Weather Alerts, Watches and Warnings
Solar and Heliospheric Observatory (SOHO)
The Very Latest SOHO Images

Powered by Space Weather PHP script by Mike Challis